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Abstract
The convolution method for the calculation of local densities of states is
presented more thoroughly along with its expression in terms of Green
functions. This constructive approach allows us to produce results for a higher
dimensionality from lower-dimensional parts. Its applications and different
aspects are discussed for some simple cases.

1. Introduction

Recently we proposed and demonstrated a new convolution technique for the calculation of the
local density of states (LDOS) [1, 2]. The idea of this novel approach is intuitively accessible,
so its mathematical description has not been revealed yet. The analytic formulation offers
the advantage of a more comprehensive view of the interplay of parameters in the models
utilized, which could be beneficial as regards further developments. Exact analytic results
being rather scarce in this area [3–7], the calculations of the LDOS and other characteristics
rely on numerical schemes,but usually they become onerous tasks even for some of the simplest
systems. In consequence, a wealth of alternatives have been produced and among them the ones
exploiting tight-binding (TB) models appear particularly useful [8–10]. In this context Green
functions (GFs) have proved to be a most versatile tool with applications that are constantly
expanded [11, 12]. The approach considered here proposes to utilize in a constructive manner
the already known LDOSs in analytic or numeric form, no matter how they have been arrived
at, and shows also that the GF can be obtained in the same way.

2. Model and method

We consider a particular class of Hamiltonians, such that in some representation they can be
written as H = ∑

i Hi(ki). This is a severe restriction, of course, but at least an important
case is included in that class, as will be demonstrated in the next section. The meaning of the
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LDOS is that dk ∼ ρ(E) dE or ρ ∼ dk/dE , while the dependence of the wavenumber k on
the energy E is given in the Hamiltonian equation; in one dimension this leads eventually to

ρ(1)(E) = a[H −1
1 (E)]′,

assuming that this derivative exists and its integral can be scaled to a unit by some coefficient a.
In two dimensions we suppose first a constant k2 and we consider the partial LDOS

ρ(1)(E; k2) = a[H −1
1 (E − H2(k2)]′.

Then the whole two-dimensional LDOS is obtained by integrating over k2:

ρ(2) = a
∫

[H −1
1 (E − H2(k2)]′ dk2.

Here the substitution η = H2(k2) produces the integral

ρ(2) = a
∫

[H −1
1 (E − η)]′[H −1

2 (η)]′ dη

which is indeed a convolution. This result can be rewritten more concisely using the commonly
adopted sign ∗ to denote the convolution operation and ρi for [H −1

i ]′:

ρ(2) = ρ1 ∗ ρ2.

In three dimensions the same reasoning leads to

ρ(3) = ρ1 ∗ ρ2 ∗ ρ3.

As the convolution is equivalent in Fourier space to a simple multiplication of the transforms, it
has the properties of this operation, namely being associative and commutative, and the result
can be presented more generally as

ρ(D) = ρ(D−1) ∗ ρ(1),

where D = 1, 2, 3 is the dimensionality of the system and ρ(0) is the delta function δ(E). This
is the defining equation of the method: it reveals an important property of the LDOS which
can be utilized independently of the way in which the LDOS itself has been obtained.

The same result was reached straightforwardly [1] by adopting a statistical viewpoint: the
distribution of the values generated by a form such as H is a ‘composition’ or ‘convolution’ [13]
of the distributions of its additive parts which correspond to the independent variables. Thus
the energy in the Hamiltonian equation is to be seen as a variable produced as a sum of
independent variables. So, the density of its distribution is the convolution of the densities
of the summed variables. This observation implies also that the eigenvalues of the system
are indeed obtained by additive combinations of eigenvalues corresponding to its components.
Within the framework of renormalization, Oliveira et al [14] have arrived at a rather similar
idea.

In terms of the GF the LDOS is expressed as

ρ(E) = − 1

π
Im g(E + i0)

where i0 is a vanishingly small imaginary quantity. In the two-dimensional case, the formula
now reads

Im g(2) = − 1

π
Im g1 ∗ Im g2.

Keeping in mind that Re g and Im g are a Hilbert transform (HT) pair, i.e.

HT(Im g) = Re g,
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and that the transform is performed as a convolution with the reciprocal of the variable [15],
the two-dimensional result can be written as

Im g(2) = − 1

π
Re g1 ∗ 1

E
∗ Re g2 ∗ 1

E
.

Using the properties of the convolution and noting that the effect of two HTs is simply a sign
inversion, one arrives at

Im g(2) = 1

π
Re g1 ∗ Re g2.

But as

Re g(2) = HT(Im g(2))

we also have

Re g(2) = − 1

π
Im g1 ∗ Re g2

and

Re g(2) = − 1

π
Im g2 ∗ Re g1.

These equations for the real and imaginary parts of g(2) are in fact contained in the formula

g(2) = − 1

2π i
g2 ∗ g1

and by the same reasoning they can be extended to the next dimension.

3. Results and discussion

We shall consider briefly some applications to a few typical cases concerning finite or infinite
structures involving eventually some degree of disorder. They offer a rather new point of view
on examples which for the most part are known.

3.1. A simple crystal

Within the TB model the Hamiltonian of a simple D-dimensional crystal is written in a plane-
wave representation as H = α + 2

∑
i βi cos(ki di), i = 1, . . . , D. Assuming the spacing to be

di = 1 and the energy ε to be expressed through the dimensionless variable E = (ε − α)/2β,
we would have k1 = arccos(E) and thus

ρ(1) = 1

π
√

(1 − E2)
,

the coefficient −1/π being included in order to scale the overall density to a unit, considering
it equal to zero outside the energy interval (−1, 1). In two and three dimensions,

ρ(2) = 1

π2

∫ 1

−1

1√
1 − (E − η)2

√
1 − η2

dη

and

ρ(3) = 1

π3

∫ ∫ 1

−1

1√
(1 − ((E − η) − ξ))2

√
(1 − η2)

√
(1 − ξ2)

dη dξ.

The curves representing the LDOS obtained for this case are shown in figure 1 where they have
been scaled to the same maximum height, instead of keeping the same (unit) area, in order to
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Figure 1. The LDOS of a 3D simple cubic crystal obtained by self-convolution. Upper panel:
the convolution of two 1D LDOSs produces a 2D LDOS; lower panel: the convolution of the 2D
LDOS and 1D LDOS produces the 3D LDOS.

offer a better view. If the singularities of the one-dimensional curve are well pronounced, they
are reproduced in subsequent calculations, as can be seen in this figure. It was not evident that
these well resolved features could be obtained at such low computational costs. In numerical
form the convolutions are reduced to sums of the type sk = ∑

i uk−i vi . In Fourier space they
are multiplications of the transforms and here we would have ρ(D) = FT (|J D

0 |), J0 being
the zeroth-order Bessel function. The attempts to obtain the same curves from the GF are
unlikely to succeed for computational reasons but, reformulated in terms of GF, the method
can be linked to various other approaches. The analytical formulae suggest that the two- or
three-dimensional LDOS can be expressed through elliptic integrals; the convolutional form
has a rather intuitive meaning, which is perhaps more intelligible.

3.2. A semi-infinite slab

The model of a slab is a structure which might be taken to be a little more realistic than the
infinite 3D crystal. Now two of the axes are infinite on both sides, while the third is restricted
to one direction only. In this case the LDOS corresponding to an infinite plane should be
convoluted with the LDOSs for atoms in a semi-infinite chain, which differ according to their
distance from the origin [16]. This has been illustrated in figure 2 which in fact reproduces
results presented by Haydock and Kelly, who in their turn were assessing the possibilities of
their own approach by repeating a plotting originally performed by Kalkstein [17]. The last
curve in the plot is essentially a replication of the lower row of curves in figure 1, as for atoms
far from the beginning of the chain the LDOS is the same as in an infinite structure. However,
one might presume that here we have gained some insight into the constitution of these well
known results.

3.3. A percolating cluster

Percolation phenomena are usually instances where finite and infinite structures interplay.
A well known result states that for a simple cubic crystal the critical concentration of bonds for
which a percolating cluster appears is close to 0.25 [18]. A reasonably good approximation
for the LDOS of such a structure can be easily produced now. A bond concentration less
than a unit means that a ‘chain’ of length N does indeed consist of isolated shorter fragments
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Figure 2. The LDOS in a semi-infinite slab for the first three atomic layers and bulk (z =
0, 1, 2, . . . ,∞). The dotted curves present on a smaller scale the LDOS in a semi-infinite chain,
while the inset shows the 2D LDOS in a plane used to produce the curves.

and its LDOS is just a weighted sum of the LDOSs of its elements, while the LDOS of
the whole crystal is the convolution of the results for three such broken chains. Statistics
for the length of the fragments are the only supplementary data needed. A crude numerical
experiment shows that for a chain of 201 sites, the available bonds (0.25) are distributed in
dimers, trimers and tetramers with frequencies of 0.187, 0.046 and 0.015 respectively; longer
fragments occur in less than 0.002 of the cases while the remainder (0.75) are isolated atoms.
For these data the result is shown in figure 3 but it could have been obtained fully ab initio
as the distribution of fragments according to their length follows some power law [18]. The
present result and its computational costs might be compared with the example presented by
Lambin and Gaspard [19] for their generalized-moments method.

3.4. A Fibonacci quasicrystal

Another related case would be a Fibonacci (quasi)crystal which is constructed from chains
built in correspondence with the law for this sequence. In one dimension a Fibonacci chain
is obtained when using bonds with two different strengths tw and ts alternating in accordance
with the Fibonacci generating rule. The two-dimensional lattice has been investigated by Yang
and Xing [20] but here the third dimension will be added. In the limit when the weak and
the strong bonds tend to the same value (tw/ts → 1) a plain cubic crystal is obtained. For
ts > tw > 0 the LDOS is rather similar to that of the percolating cluster (in figure 3). If tw
decreases down to 0, a Fibonacci chain breaks down into non-interacting fragments, but here
they are just atoms, dimers or trimers, so the LDOS for any dimension consists of a fixed
number of discrete levels. As it is expressed as a sum of delta functions, its convolutions
produce again sums of delta functions whose poles are obtained by simple addition. Thus,
assuming that tw = 0 and ts = 1, one can write for the eigenvalues

e(D)
k = e(D−1)

i + e(1)
j where i = 1 . . . n; j = 1 . . . m; k = i j ; and e(0) = 0.

The sets of different levels are easily enumerated:

e(1) = {0,±1,±√
2},

e(2) = {e(1),±2,±2
√

2,±1 ± √
2},

e(3) = {e(2),±3,±3
√

2,±2 ± √
2,±1 ± 2

√
2}.
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Figure 3. The LDOS for a percolating cluster in a cubic crystal.

A non-zero tw produces the interaction between finite fragments and the degeneracy is
lifted, so the eigenvalues are smeared into bands, which remain separated by gaps as long as
tw is sufficiently small. Figure 4 presents the eigenspectrum of a crystal with N = 56, for
ts = 1 and tw = 0.01, when all the 25 bands of e(3) are visible. (It should be noted that
here the ‘width’ of a trimer is 2

√
(2), i.e. larger than 2, and accordingly the full width of the

spectrum, which is 6
√

(2), is greater than 6.) This approach allows one to treat also variants
of the Fibonacci or similar sequences and their combinations into exotic (quasi)crystals.

3.5. The effect of a constant electric field

The two preceding examples involve a weakening or cancelling of some particular bonds in
a structure. When all the bonds along one dimension disappear, the dimensionality D of the
system is reduced to D − 1 and in fact this could be interpreted as representing the effect
produced on the LDOS by a constant electric field with sufficient strength. For the simple
crystal considered above (section 3.1), the Fourier transform of the LDOS with dimensionality
D being J D

0 , this form makes it easier to account for the electrical effect. The result for an
infinite chain obtained by Davison et al [5] when a field with strength F is applied along some
axis becomes in Fourier space J0(|2 sin(ω)/F |) [21]. Now the transform of the LDOS, being
represented by a product of such factors each corresponding to an axis, for higher field strength
along any one of them turns into a constant (J0(0) = 1), so its original form is a delta function
and the dimensionality of the system is lowered. We have already considered the physical
aspect of this phenomenon in previous work [22].
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Figure 4. The eigenspectrum of a Fibonacci quasicrystal.

The limitations for this way of proceeding are fairly evident as it relies on the additivity of
the Hamiltonians. However, some insight into the production of the LDOS has been gained.
For instance, a ρ(2)-curve now can be seen as (the way to the limit for) a weighted sum of
‘U’ shapes centred at different energies. If second neighbours are to be included in a TB
Hamiltonian with dimensionality greater than one, it ceases to be additively separable but
it can still be factorized, now as a product, and then the summation would include not just
weighted and displaced one-dimensional ‘U’ shapes but also ones with a different spread.

In one dimension there is no problem in considering neighbours further than first ones and
obtaining the LDOS for such chains as a derivative of the inverted Hamiltonian, a result that
has also been obtained by Oliveira et al [14]. Yuan et al [23] have investigated the so-called
labyrinth tiling, which is constructed from two diagonally oriented ‘octonacci’ chains and so
the sites appear as if they were ‘pure’ second neighbours. In this case the eigenvalues for the
TB Hamiltonian defined on the tiling are simply the products of the eigenvalues from the two
chains. These remarks could be used to suggest some perspectives for future developments of
the method discussed here.

4. Conclusions

The proposed method allows one to utilize effectively results already obtained and to extend
them further. It is able to generate new ones and, in many instances, results that are
otherwise difficult to obtain become easily accessible. However, the method relies on the
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separability of the Hamiltonian, which severely limits its scope. The analytic formulation of
the method suggests a novel view even if the complexity of the calculations mostly prevents
their completion. Some discrete and/or finite cases however turn out to be trivial.
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